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Abstract

Thermoelastic problem for a composite solid with initial stresses is considered on the basis of the asymptotic

homogenization method. The homogenized model is constructed by means of the two-scale asymptotic homogenization

techniques. The major result of a present paper is that the effective (homogenized) thermoelastic characteristics of the

composite material depend not only on local distributions of all types of material characteristics: local elastic properties,

local thermoelastic properties, but also on local initial stresses. Therefore it is shown that for the inhomogeneous

(composite) material local initial stresses contribute towards values of the effective characteristics of the material. This

kind of interaction is not possible for the homogeneous materials. From the mathematical viewpoint, the asymptotic

homogenization procedure is equivalent to the computation of G-limit of the corresponding operator. And the above

noted phenomenon is based on the fact that in the considering case the G-limit of a sum is not equal to the sum of G-

limits. The developed general homogenized model is illustrated in the particular case of the small initial stresses, which

is common for the practical mechanical problems. The explicit formulas for the effective thermoelastic characteristics

and numerical results are obtained for a laminated composite solid with the initial stresses.

� 2003 Published by Elsevier Ltd.
1. Homogenization for stressed inhomogeneous media

Consider an inhomogeneous (composite) elastic solid of a periodic structure with a periodicity cell Pe

shown in Fig. 1. Here parameter e � 1 denotes a characteristic dimension of the periodicity cell. The
condition e � 1 is formalized as e ! 0.

The solid is subject to forces FðxÞ that cause stresses re
ijð0Þ. These stresses are called the initial stresses.

By applying an additional force fðxÞ and a temperature change HðxÞ, the problem of deformation of a body

having initial stresses arises. The general description of a solid with initial stresses has been considered in

Washizu (1982). The following problems have been formulated to describe the basic (initial) state:
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Fig. 1. Composite solid of a periodic structure and the periodicity cell Y in the ‘‘fast’’ variables y.
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Leð0; 0Þve ¼ F in Q; re
ijð0Þne

j ¼ GiðxÞ on S1; ve ¼ v0 on S2 ð1:1Þ
and to determine the additional displacements:
Leðr;HÞue ¼ f in Q; re
ijðrÞne

j ¼ giðxÞ on S1; ue ¼ u0 on S2; ð1:2Þ
where ne is the normal to S1, S1 and S2, are shown in Fig. 1. Summation with respect to the repeating indices
is assumed here and in the sequel.

In the above Eqs. (1.1) and (1.2) ve and ue are the initial and additional displacements, respectively;

cijklðx=eÞ are the local elastic properties of the material with no initial stresses;
re
ijð0Þ ¼ cijklðx=eÞove

k=oxl ð1:3Þ
are the initial stresses;
re
ijðrÞ ¼ ðcijklðx=eÞ þ re

jlð0ÞdikÞoue
k=oxl þ tijH ð1:4Þ
are the so-called additional stresses (see Washizu, 1982).

Leðr;HÞu ¼ o=oxj½ðcijklðx=eÞ þ re
jlð0ÞdikÞouk=oxl þ tijðx=eÞH� is the thermoelastic operator that also

incorporates the initial stresses;

dik ¼ 1, if i ¼ k, and dik ¼ 0, if i 6¼ k;
tijðx=eÞ ¼ 
cijklðx=eÞaklðx=eÞ, where aklðx=eÞ are the coefficients of the linear thermal expansion;
Leð0;HÞ ¼ o=oxj½cijklðx=eÞouk=oxl þ tijðx=eÞH� is the thermoelastic operator with no initial stresses;

Leð0; 0Þu ¼ o=oxj½cijklðx=eÞouk=oxl� is the elastic operator with no initial stresses.

The functions cijklðx=eÞ, re
jlð0Þðx; x=eÞ, tijðx=eÞ, aklðx=eÞ, are periodic in variables x with periodicity cell

Pe.

Let us describe the distinctive features of the problem under consideration. The operator Leðr;HÞ can be
written in the form
Leðr;HÞu ¼ Leð0; 0Þuþmeuþ o=oxj½tijðx=eÞH�; ð1:5Þ
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where Leð0; 0Þ is the elastic operator (see above), the operator me defined as meu ¼ o=oxj½re
jlð0Þðx; x=eÞdik �

ouk=oxl� incorporates the initial stresses and the term o=oxj½tijðx=eÞH� incorporates the thermal expansion.

It is known, see e.g., Bensoussan et al. (1978), that composite body as e ! 0 can be replaced by a

homogeneous (referred to as ‘‘homogenized’’) body similar to it in mechanical behavior. This fact is known
for elastic solids, see e.g., Duvaut (1976), for thermoelastic solids, see e.g., Kolpakov (1980), Kalamkarov

(1989), and for elastic solids with initial stresses see Kolpakov (1989). From the mathematical viewpoint,

the homogenization procedure is equivalent to the computation of a G-limit of a corresponding operator

(see Marcellini, 1975). We would like to compute the homogenized (also called effective) characteristics of

the body. Thus we would like to compute G-limit of the operator Leðr;HÞ (1.5) as e ! 0. Commonly, ‘‘limit

of a sum is equal to the sum of limits’’. But for G-limits that is not true, and it is possible that ‘‘G-limit of a

sum is not equal to the sum of G-limits’’ (see Marcellini, 1975). From the mechanical viewpoint it is ex-

plained by the occurrence of a general state of local stress and strain when the uniform homogenized
stresses are applied to an inhomogeneous medium (see Kolpakov, 2001). The case when ‘‘G-limit of a sum

is not equal to the sum of G-limits’’ also occurs for the sum of a differential operator and a fast oscillating

function of large amplitude, see Flery et al. (1979), or derivative of a fast oscillating function (see Kolpakov,

1980; Kalamkarov and Kolpakov, 1997).

In the case considered in the present paper we deal with the homogenization problem for the operator

(1.5), which is the sum of the operators Leð0; 0Þu ¼ o=oxj½cijklðx=eÞouk=oxl� and meðrÞu ¼ o=oxj½re
jlð0Þdikouk=

oxl� of the same order with the fast oscillating coefficients and the derivative of the fast oscillating function

o=oxjðtijðx=eÞHÞ. For all of them ‘‘G-limit of a sum is not equal to the sum of G-limits’’. It is the first
characteristic feature of the problem under study.

Another distinctive feature of the problem is related to the effect of ‘‘lose of symmetry’’ in the problem

for elastic body with initial stresses Kolpakov (2004). The elastic constants cijkl have well-known symme-

tries, in particular cijkl ¼ cjikl and cijkl ¼ cklij (see e.g., Timoshenko and Goodier, 1970). Introducing

Bijkl ¼ cijkl þ re
jlð0Þdik, we can rewrite (1.4) in the form re

ijðrÞ ¼ Bijkl oue
k=oxl þ tijðx=eÞH and consider it as a

constitutive equation for a stressed thermoelastic body. In contrast to the elastic constants, the quantities

Bijkl do not have all symmetries common for the elastic constants. Namely Bijkl 6¼ Bijlk. At the same time the

quantities Bijkl retain the symmetry Bijkl ¼ Bklij. Indeed, Bijkl ¼ cijkl þ re
jlð0Þdik ¼ cklij þ re

ljð0Þdki ¼ Bklij be-
cause cijkl and re

jlð0Þdik are symmetric with respect to the change of the indices i $ k j $ l.
1.1. Asymptotic homogenization method applied to the thermoelastic composites with initial stresses

It will be shown in this subsection that the thermoelastic composite body with initial stresses as e ! 0

can be replaced by a homogeneous (referred to as ‘‘homogenized’’) body similar to it in mechanical

behavior and the solutions of the problems (1.1) and (1.2) may be approximated by the solutions of the so-

called homogenized problems:
Lð0; 0Þv ¼ F in Q; rijð0Þnj ¼ 0 on S1; v ¼ 0 on S2; ð1:6Þ

Lðr;HÞu ¼ f in Q; rijðrÞnj ¼ 0 on S1; u ¼ 0 on S2: ð1:7Þ
Here: v and u are the ‘‘homogenized’’ displacements (that is, the displacements determined from the homo-

genized problems);

• Lð0;HÞv ¼ o=oxj½aijklð0Þovk=oxl þ Tijð0ÞH� is the homogenized operator corresponding to (1.6) (the

homogenization of thermoelastic problem with no initial stresses);
• Lðr;HÞu ¼ o=oxj½aijklðrÞouk=oxl þ TijðrÞH� is the homogenized operator corresponding to (1.7) (the

homogenization with initial stresses);
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• aijklð0Þ are the coefficients of operator Lð0; 0Þ (these are the ‘‘homogenized’’ elastic constants of the body

with no initial stresses) and Tijð0Þ are the ‘‘homogenized’’ thermoelastic constants of the body with no

initial stresses;

• aijklðrÞ are the coefficients of operator LðrÞ (these are the ‘‘homogenized’’ constants of the body with
initial stresses) and TijðrÞ are the ‘‘homogenized’’ thermoelastic constants of the body with initial stres-

ses;
rijðr;HÞ ¼ aijklðrÞouk=oxl þ TijðrÞH;
rijð0;HÞ ¼ aijklð0Þovk=oxl þ Tijð0ÞH;
h�i ¼ ðmes YÞ
1
R
Y dy is the average value over the periodicity cell Y ¼ e
1Pe ¼ fy ¼ x=e : x 2 Peg in the

‘‘fast’’ variables y ¼ x=e (see Fig. 1).
Number of authors (see Bensoussan et al., 1978; Sanchez-Palencia, 1980; Bakhvalov and Panasenko,

1989; Oleinik et al., 1990; Cioranescu and Saint Jean Paulin, 1979; Kalamkarov, 1992, see also references in

the above books) presented the homogenization procedures for an elastic body with no initial stresses.

From the references above it is known that rijð0Þ are equal to average value of the initial stresses:
rijð0Þ ¼ hre
ijð0Þi: ð1:8Þ
The homogenization problem for thermoelastic body was analyzed by Kolpakov (1980) (see also Kalam-

karov and Kolpakov (1997)). Kolpakov (1980) has shown that Eq. (1.8) remains valid for thermoelastic
problem.

1.2. Computation of homogenized constants of a stressed thermoelastic body

To derive formulas for computing the homogenized constants of stressed body we use the two-scale

asymptotic expansion method (see e.g., Bakhvalov and Panasenko, 1989). We use the following asymptotic

expansions:

Expansion for displacements
ue ¼ uð0ÞðxÞ þ euð1Þðx; yÞ þ � � � ¼ uð0ÞðxÞ þ
X1
k¼1

ekuðkÞðx; yÞ: ð1:9Þ
Expansion for stresses
re
ijðrÞ ¼

X1
k¼0

ekrðkÞ
ij ðx; yÞ: ð1:10Þ
Here x are the ‘‘slow’’ variables, and y ¼ x=e are the ‘‘fast’’ variables. The functions in the right-hand side
of (1.9) and (1.10) are assumed to be periodic in y with periodicity cell Y. Note that the term uð0ÞðxÞ in (1.9)
depends on the ‘‘slow’’ variable x only.

With the use of two-scale expansions, the differential operators are presented in the form of sum of

operators in x and in y (see e.g., Bensoussan et al., 1978). For the function Zðx; yÞ of the arguments x and y,
as in the right-hand sides of (1.9) and (1.10), this representation takes the form
oZ=oxi ¼ Z;ix þ e
1Z;iy : ð1:11Þ
Here and below the subscribe, ix means o=oxi and, iy means o=oyi.
Substituting (1.9) and (1.10) into Eq. (1.4), we obtain with allowance for the differentiating rule

(1.11)
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X1
k¼0

ekrðkÞ
ij ¼

X1
k¼0

ekBijmnðuðkÞm;nx þ e
1uðkÞm;nyÞ þ tijH; k ¼ 0; 1; . . . ; ð1:12Þ
where
Bijmn ¼ cijmn þ re
jnð0Þdim: ð1:13Þ
Equating the terms with identical powers of e in (1.12), we obtain
rð0Þ
ij ¼ Bijmnuð0Þm;nx þ Bijmnuð1Þm;ny þ tijH;

rðkÞ
ij ¼ BijmnuðkÞm;nx þ Bijmnuðkþ1Þm;ny ; k ¼ 1; 2; . . . ð1:14Þ
The equilibrium equation (see (1.2) and (1.4) and definition of the operator Leðr;HÞ) may be written for

stresses
ore
ijðrÞ=oxj ¼ fi in Q; re

ijðrÞnj ¼ 0 on S1: ð1:15Þ
Substituting (1.10) into the equilibrium equations (1.15), we obtain with account of rule of differentiation
(1.11)
X1

k¼0
ekrðkÞ

ij;jx þ
X1
k¼0

ek
1rðkÞ
ij;jy ¼ fi in Q;

X1
k¼0

ekrðkÞ
ij nj ¼ 0 on S1: ð1:16Þ
Equating the terms with identical power of e in (1.16), we obtain an infinite sequence of equations:
rð0Þ
ij;jx þ rð1Þ

ij;jy ¼ fi and rðkÞ
ij;jx þ rðkþ1Þ

ij;jy ¼ 0 for k > 0 in Y ; k ¼ 0; 1; . . . ð1:17Þ
Averaging (1.17) over the periodicity cell Y , we obtain an infinite sequence of the homogenized equilibrium

equations, the first of which is the following
hrð0Þ
ij i;jx ¼ fi ð1:18Þ
Here we use equality hrð1Þ
ij;jyi ¼ 0, which follows from the formula
Z

Y
rð1Þ

ij;jy dy ¼
Z
oY

rð1Þ
ij nj dyþ

Z
C

rð1Þ
ij nj dy:
The first integral is equal to zero by virtue of periodicity rð1Þ
ij and anti-periodicity vector-normal n. The

second integral is equal to zero by virtue of condition rð1Þ
ij nj ¼ 0 on C.

Let us consider the problem (1.13), k ¼ 0. It can be written as
ðBijmnðyÞuð1Þm;ny þ BijklðyÞuð0Þm;nx þ tijðyÞHÞ;j ¼ 0 in Y : ð1:19Þ
Allowing for the fact that the function of the argument x plays the role of a parameter in the problems in
the variables y and uð0Þ and H depend on x, only, solution of the problem (1.19) with the periodicity

conditions can be found in the form
uð1Þ ¼ NmnðyÞuð0Þm;nxðxÞ þN0ðyÞHðxÞ þ VðxÞ: ð1:20Þ
Here V ðxÞ is an arbitrary function of the argument x,which does not influence the final equations, and the

periodic function N klðyÞ and N0ðyÞ represent solutions of the following unit cell problems:

The elasticity cellular problem for stressed body:
ðBijmnðyÞNkl
m;ny þ BijklðyÞÞ;j ¼ 0 in Y : ð1:21Þ
N klðyÞ is periodic in y with the periodicity cell Y .



1254 A.G. Kolpakov, A.L. Kalamkarov / International Journal of Solids and Structures 41 (2004) 1249–1262
The thermoelasticity cellular problem for stressed body:
ðBijmnðyÞN 0
m;ny þ tijðyÞÞ;j ¼ 0 in Y : ð1:22Þ
N0ðyÞ is periodic in y with the periodicity cell Y .

Remark. The cellular problems (1.21) and (1.22) look similar to the classical elastic and thermoelastic unit

cell problems (see e.g., Bensoussan et al., 1978; Kalamkarov and Kolpakov, 1997). Nevertheless, there is a

substantial difference between the problems (1.21) and (1.22) and the classical cellular problems. The

coefficients of the classical cellular problems are the elastic constants cijmn. The coefficients Bijmn of the

cellular problems (1.21) and (1.22) are the combination of the elastic constants and the initial stresses. We
will use this fact in the next sections of the paper.

Substituting (1.20) into (1.14), we have
rð0Þ
ij ¼ ðBijmnðyÞNkl

m;ny þ BijklðyÞÞuð0Þk;lxðxÞ þ ðtijðyÞ þ BijmnðyÞN 0
m;nyÞHðxÞ: ð1:23Þ
Averaging (1.23) over the cell Y , we obtain the following homogenized constitutive equation
hrð0Þ
ij i ¼ aijklðrÞuð0Þk;lxðxÞ þ TijðrÞHðxÞ; ð1:24Þ
where
aijklðrÞ ¼ hBijmnðyÞNkl
m;ny þ BijklðyÞi; ð1:25Þ

TijðrÞ ¼ htijðyÞ þ BijmnðyÞN 0
m;nyi ð1:26Þ
are called the homogenized (or effective) elastic and thermoelastic characteristics of the initially stressed

solid.

We introduce the homogenized constants of thermal expansion as AijðrÞ ¼ 
cijklðrÞ
1TklðrÞ, where
cijklðrÞ
1 is the inverse to the tensor cijklðrÞ.

1.3. The homogenized model

The homogenized equilibrium equation (1.18), the homogenized constitutive equation (1.24) and the

boundary conditions
uð0ÞðxÞ ¼ 0 on S2; rð0Þ
ij ne

j ¼ 0 on S1 ð1:27Þ
represent the homogenized problem for stressed body. Substituting (1.25) into (1.24), we can write the

homogenized problem in the form (1.7).

The fundamental difference of this problem from the homogenized problem for body having no initial

stresses is the dependence of the cellular problems (1.21) and (1.22) and the homogenized coefficients

aijklðrÞ, TijðrÞ on the initial stresses.
2. The case of small initial stresses

Consider the case when the initial stresses re
ijð0Þ are small as compared with the elastic constants cijkl, and

Bijkl (1.13) can be represented as Bijklðx; yÞ ¼ cijklðyÞ þ lbijklðx; yÞ, cf. (2.1). We will find solution of the

cellular problem (1.22) in the form
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N0ðyÞ ¼ N00ðyÞ þ lN10ðyÞ þ � � � ¼
X1
s¼0

lsN s0ðyÞ: ð2:1Þ
All the functions N s0ðyÞ in (2.1) are assumed to be periodic in y with the periodicity cell Y . Substituting (2.1)
into (1.22) and equating the terms with identical powers of l, we obtain an infinite sequence of problems,

the first two of which are the following:
ðcijnmðyÞN 00
m;ny þ tijðyÞÞ;jy ¼ 0 in Y ; ð2:2Þ
ðcijnmðyÞN 10
m;ny þ bijmnðx; yÞN 00

m;nyðyÞÞ;jy ¼ 0 in Y ; ð2:3Þ
N10ðyÞ;N 00ðyÞ are periodic with the periodicity cell Y : ð2:4Þ
The problem (2.2) is the well-known cellular problem for thermoelastic body with no initial stresses, see

Kalamkarov and Kolpakov (1997), or, that is the same, the cellular problem (1.22) with Bijkl ¼ cijkl. Denote
solution of the cellular problem (2.2) with no initial stresses by N0ðyÞ.

Substituting (2.1) into (1.22) and saving the terms up to the linear (in l) term, we obtain
TijðrÞ ¼ Tijð0Þ þ lnijðrÞ þ � � � ¼ ð2:5Þ
where � � � means the terms having the order of l2 and higher,
Tijð0Þ ¼ htij 
 cklmnN
0ij
k;lyN

00
m;nyi;

nijðrÞ ¼ h
bklmnN
0ij
k;lyN

00
m;ny 
 cklmnN

1ij
k;lyN

00
m;ny 
 cklmnN 1ij

m;nyN
10
m;nyi:

ð2:6Þ
The coefficients Tijð0Þ are the homogenized (or effective) thermoelastic constants of the composite material

with no initial stresses, see Kolpakov (1980), Kalamkarov and Kolpakov (1997).
nijðrÞ ¼ hre
lnð0ÞN 0

p;nyN
ij
p;lyi: ð2:7Þ
Remark. The nijðrÞ are expressed in terms of derivatives of Nab and N0 and cannot be expressed in terms of

deformations corresponding to Nab and N0 in the general case.

The formula (2.7) can be written in terms of the homogenized stresses. According to Oleinik et al. (1990),

the local stresses in a body with no initial stresses are given by the formula
re
ijð0Þ ¼ cijklðx=eÞðekl þ Npq

k;lyðx=eÞepqÞ ¼ cijklðx=eÞðdkpdlq þ Npq
k;lyðx=eÞÞJpqmnrmnð0Þ; ð2:8Þ
where epq ¼ 1=2ðovp=oxq þ ovq=oxpÞ are the homogenized strains and fJpqmng ¼ faijklð0Þg
1 is the homo-

genized compliance tensor.

Substituting last expression from (2.8) into (2.7) in place of re
ij, we obtain the following formula:
TijðrÞ ¼ Tijð0Þ þ lrijrsðrÞrrsð0Þ; ð2:9Þ
where
rijrsðrÞ ¼ hcqtcdNrs
c;dyN

0
p;tyN

ij
p;qy þ cqtrsN 0

p;tyN
ij
p;qyi ð2:10Þ
with summation with respect to the repeating subscripts.
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3. Properties of the thermoelastic constants of a stressed composite solid

As seen from Eq. (1.25) the homogenized constants aijklðrÞ depend only on the local elastic constants and
initial stresses. The homogenized thermoelastic constants TijðrÞ depend on all local characteristics: the local
thermoelastic constants, the local elastic constants and also on the local initial stresses.

In the general case, see Kolpakov (1989, 1992), see also comment on the inequality (3.1) in Kolpakov

(2001),
aijklðrÞ 6¼ aijklð0Þ þ rjlð0Þdik; ð3:1Þ

bijðrÞ 6¼ hbiji; aijðrÞ 6¼ haiji: ð3:2Þ
It is possible to express the effective thermoelastic constants through the solution of the elastic cellular
problems only. Indeed, the following equality takes place
TijðrÞ ¼ htijðyÞ þ BijmnðyÞN 0
m;nyi ¼ htijðyÞ þ tmnðyÞNij

m;nyi: ð3:3Þ
The above equality (3.3) can be proved as follows. Multiplying (1.21) by N 0
i and (1.22) by Nkl

i and inte-

grating by parts, and applying the periodicity condition, we obtain
hBijmnðyÞNkl
m;nyN

0
i;jy þ BijklðyÞN 0

i;jyi ¼ 0; ð3:4Þ

hBijmnðyÞN 0
m;nyN

kl
m;ny þ tijðyÞNkl

i;jyi ¼ 0: ð3:5Þ
From Eqs. (3.3) and (3.4) and the symmetry Bijmn ¼ Bmnij (see Section 1) we obtain Eq. (3.3). This formula is

the analog of the expression of the homogenized thermoelastic constants through the solution of the elastic

cellular problem, see Kolpakov (1980).

If cijklðyÞ ¼ const then Tij ¼ htiji. Indeed, in this case from (1.21) we have N ij ¼ 0 and we obtain Tij ¼ htiji
from the last formula in (3.3). It means that the initial stresses can influence the thermoelastic constants

only in the case of inhomogeneous materials.
4. Laminated thermoelastic medium with the initial stresses

The above developed mathematical apparatus can be successfully applied to the calculation of the

effective characteristics of the laminated media.

If we assume that the layers are parallel to the Ox1x2-plane; then all the properties of the material will

depend only on the coordinate y3, and the local problems will become ordinary differential equations that

can be solved explicitly. In the case under consideration the cellular problem (2.3) is transformed to the

following problem:
ðci3m3ðy3ÞNkl
m0 þ ci3klðy3ÞÞ0 ¼ 0 on ½0; 1�; ð4:1Þ
N0ðy3Þ is periodic with period 1 and the cellular problem (2.2) is transformed to
ðci3m3ðy3ÞN 00
m þ ti3ðy3ÞÞ0 ¼ 0 on ½0; 1�; ð4:2Þ
N0ðy3Þ is periodic with period 1.
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The prime means d=dy3. Note that N
klðy3Þ ¼ N0klðy3Þ and N0ðy3Þ ¼ N00ðy3Þ.

In the considered case (2.7) takes the form
TijðrÞ ¼ Tijð0Þ þ lnijðrÞ; ð4:3Þ
where
nijðrÞ ¼ hre
33ð0ÞN 00

p N ij0
p i: ð4:4Þ
The expressions for the homogenized thermoelastic constants Tijð0Þ of composite with no initial stresses can
be found in Kalamkarov and Kolpakov (1997).

It is known that in the laminated media described above re
33ð0Þ ¼ r33ð0Þ (see (1.8)). Then (4.4) takes the

form
nijðrÞ ¼ r33ð0ÞhN 00
p N ij0

p i: ð4:5Þ
Solving the problem (4.2) we obtain
N 00
i ¼ 
ci3n3ðy3Þ
1tn3ðy3Þ þ ci3n3ðy3Þ
1Cn; ð4:6Þ
where ‘‘)1’’ denotes the inverse matrix and fCng are constants.

From the periodicity condition in (4.2) and (4.6) we get
h
ci3n3ðy3Þ
1tn3ðy3Þi þ hci3n3ðy3Þ
1Cni ¼ 0:
Solving this equation with respect to constants fCig, we obtain
Ci ¼ hci3n3ðy3Þ
1i
1hcn3m3ðy3Þ
1tm3ðy3Þi:
Substituting this equality into Eq. (4.6), we get
N 00
i ¼ 
ci3n3ðy3Þ
1tn3ðy3Þ þ ci3n3ðy3Þ
1hcn3m3ðy3Þ
1i
1hcm3p3ðy3Þ
1tp3ðy3Þi: ð4:7Þ
In the similar way we obtain from (4.1)
Nkl0
i ¼ 
ci3n3ðy3Þ
1cn3klðy3Þ þ ci3n3ðy3Þ
1hcn3m3ðy3Þ
1i
1hcm3p3ðy3Þ
1cp3klðy3Þi: ð4:8Þ
For isotopic materials ci3k3 ¼ dikci3i3 and tij ¼ dija, where a means the linear thermal expansion coefficient.

Then c
1i3n3 ¼ din=ci3i3, and Eq. (4.7) takes the form
N 00
i ¼ di3 aðy3Þ

 

 1

c3333ðy3Þ
1

c3333ðy3Þ

� �1

haðy3Þi
!
: ð4:9Þ
In the similar way we obtain from (4.8)
Nkl0
i ¼ 
 ci3klðy3Þ

ci3i3ðy3Þ
þ 1

ci3i3ðy3Þ
1

ci3i3ðy3Þ

� �
1 ci3klðy3Þ
ci3i3ðy3Þ

� �
: ð4:10Þ
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Substituting Eqs. (4.9) and (4.10) into (4.5), we obtain
nkkðrÞ ¼ r33ð0Þ aðy3Þ 

1

c3333ðy3Þ
1

c3333ðy3Þ

� �
1

haðy3Þi
 !*

� 
 c33kkðy3Þ
c3333ðy3Þ

þ 1

c3333ðy3Þ
1

c3333ðy3Þ

� �
1 c33kkðy3Þ
c3333ðy3Þ

� � !+

¼ r33ð0Þ 
 aðy3Þ
c33kkðy3Þ

c3333ðy3Þ
� �

þ c33kkðy3Þ
c3333ðy3Þ2

* +
1

c3333ðy3Þ

� �
1

haðy3Þi
"

þ aðy3Þ
c3333ðy3Þ

� �
1

c3333ðy3Þ

� �
1 c33kkðy3Þ
c3333ðy3Þ

� �


 1

c3333ðy3Þ2

* +
1

c3333ðy3Þ

� �
2

haðy3Þi
c33kkðy3Þ
c3333ðy3Þ

� �#
: ð4:11Þ
By using the well-known formulas for the elastic constants of isotropic material (see e.g., Timoshenko and

Goodier, 1970),
c3311 ¼
Em

ð1þ mÞð1
 2mÞ ; c3333 ¼
Eð1
 mÞ

ð1þ mÞð1
 2mÞ ð4:12Þ
and substituting (4.12) into (4.11), we obtain for k ¼ 1
n11ðrÞ ¼ r33ð0Þ
"

 aðy3Þ

vðy3Þ

� �

 1

nðy3Þvðy3ÞEðy3Þ

� �
1

nðy3ÞEðy3Þ

� �
1

haðy3Þi

þ aðy3Þ
nðy3ÞEðy3Þ

� �
1

nðy3ÞEðy3Þ

� �
1
1

v

� �

 1

nðy3ÞEðy3Þ2

* +
1

nðy3ÞEðy3Þ

� �
2

haðy3Þi
1

vðy3Þ

� �#
:

In the considered case n22ðrÞ ¼ n11ðrÞ.
For k ¼ 3 we obtain
n33ðrÞ ¼ r33ð0Þ
aðy3Þ

nðy3ÞEðy3Þ

� �
1

nðy3ÞEðy3Þ

� �
1
"


 1

nðy3Þ2Eðy3Þ2

* +
1

nðy3ÞEðy3Þ

� �
2

haðy3Þi
#
;

where
n ¼ 1
 m
ð1þ mÞð1
 2mÞ ; v ¼ 1
 m

m
and c3333 ¼ nE;

c3311ðy3Þ
c3333ðy3Þ

¼ 1

v
:

For m ¼ const: we get
n11ðrÞ ¼ n22ðrÞ ¼ r33ð0Þ
aðy3Þ
Eðy3Þ

� �
1

Eðy3Þ

� �
1
"


 1

Eðy3Þ2

* +
1

Eðy3Þ

� �
2

haðy3Þi
#
1

v
;

n33ðrÞ ¼ r33ð0Þ
aðy3Þ
Eðy3Þ

� �
1

Eðy3Þ

� �
1
"


 1

Eðy3Þ2

* +
1

Eðy3Þ

� �
2

haðy3Þi
#
:



Fig. 2. N as function of l1.
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The quantity
N ¼ aðy3Þ
Eðy3Þ

� �
1

Eðy3Þ

� �
1


 1

Eðy3Þ2

* +
1

Eðy3Þ

� �
2

haðy3Þi
was computed for two-components composite. For two-component composite
hf i ¼ f1l1 þ f2l2;
where l1 is the volume contents of the first material, l2 ¼ 1
 l1 is the volume contents of the second

material. Fig. 2 shows two plots for N as a function of l1. It is seen that function N can take both positive
and negative values.
5. Conclusions

The homogenization problem for the inhomogeneous (composite) thermoelastic solid with the initial

stresses is analyzed. It is shown that for the inhomogeneous body the asymptotic homogenization method

should be applied directly to the original problem formulation in order to take into account the initial

stresses in a correct way. Application of the direct analog of the classical theory to inhomogeneous bodies,
in general, leads to the wrong results.

It is proved that the effective (homogenized) thermoelastic characteristics of the composite mate-

rial depend not only on local distributions of the constituent materials: i.e. local elastic properties,

local thermoelastic properties, but also on local initial stresses. Therefore it is shown that for the inho-

mogeneous (composite) material local initial stresses contribute towards the values of the effective

characteristics of the material. This kind of interaction is not possible for the homogeneous materials.

From the mathematical viewpoint, the asymptotic homogenization procedure is equivalent to the com-

putation of G-limit of the corresponding operator. And the above noted mechanical phenomenon
is based on the fact that in the considering case the G-limit of a sum is not equal to the sum of

G-limits.



1260 A.G. Kolpakov, A.L. Kalamkarov / International Journal of Solids and Structures 41 (2004) 1249–1262
The developed general homogenized model is applied to the practically important case of the small initial

stresses as compared with the magnitudes of the elastic constants. In this case the effective characteristics,

both elastic and thermoelastic, of the composite with initial stresses are represented in the following form:
the coefficient corresponding to the composite with no initial stressesþ the first order corrector:
It is shown that the first order correctors can be expressed through the solutions of the unit cell problem

for the body with no initial stresses.

Finally, the explicit formulas for the effective thermoelastic characteristics and numerical results are

obtained for a laminated composite solid with the initial stresses.
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Appendix A

A.1. Transformation of the formula (1.26) to a bilinear functional

Let us obtain a representation of the homogenized thermoelastic constants in the form of a bilinear

functional. Being of interest by itself, such kind of representation is useful for the analysis of homogeni-

zation problems.
Multiply Eq. (1.21) by N 0

j and integrate by parts over the periodicity cell Y . As a result, we obtain the

following equality with account of periodicity of N kl and N0:
hBijmnðyÞNkl
m;nyN

0
i;jy þ Bijklðx; yÞN 0

i;jyi ¼ 0:
Then taking into account that Bijkl ¼ Bklij and changing subscripts, we obtain
hBijmnðx; yÞN 0
m;nyi ¼ 
hBklmnðyÞNij

m;nyN
0
k;lyi: ðA:1Þ
Eqs. (1.26) and (A.1) yield the following formula:
TijðrÞ ¼ htij 
 BklmnðyÞNij
m;nyN

0
k;lyi: ðA:2Þ
The right-hand side of Eq. (A.2) is the bilinear functional.

A.2. Elimination of the functions N10 and N1ij from the formula for the first-order corrector

By resorting to problem (2.4) and (2.3) we can eliminate the functions N10 and N1ij from Eq. (2.6).

Multiplying Eq. (2.4) by N 00
i and integrating the result by parts over the unit cell Y , and taking into

account the periodicity of N 0ij and N10 and the boundary condition (2.4) we obtain
hcijnmðyÞN 1kl
m;nyN

00
i;jy þ bijklðx; yÞN 00

i;jy þ bijmnðx; yÞN 0kl
m;nyN

00
i;jyi ¼ 0:
Afterwords,
hcijmnðyÞN 1kl
m;nyN

00
i;jyi ¼ 
hbklmnðx; yÞN 0ij

m;nyN
00
k;ly þ bijklðx; yÞN 00

i;jyi: ðA:3Þ
Multiplying Eq. (2.3) by N 0kl
i and integrating the result by parts over the cell Y , and taking into account

the periodicity of N 0ij and N10 we obtain
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hcijmnðyÞN 10
m;nyN

0kl
i;jy þ bijmnðx; yÞN 00

m;nyN
0kl
i;jy i ¼ 0:
Afterwords,
hcijmnðyÞN 10
m;nyN

0kl
i;jy i ¼ 
hbijmnðx; yÞN 00

m;nyN
0kl
i;jy i: ðA:4Þ
Substituting Eqs. (A.3) and (A.4) into (2.6), we obtain
nijðrÞ ¼ h
bklmnðyÞN 0ij
m;nyN

00
k;ly þ tklmnðyÞN 0ij

m;nyN
00
k;ly þ bklijðyÞN 00

k;ly þ bklmnðyÞN 00
m;nyN

0ij
k;lyi

¼ hbklijðyÞN 00
k;ly þ bklmnðyÞN 00

m;nyN
0ij
k;lyi:
Statement 1. Let the stresses r�
ij be periodic in y with the periodicity cell Y , and let them satisfy the equation

r�
ij;jy ¼ 0 in Y . Then hr�

ijZ;jyi ¼ 0 for any function ZðyÞ periodic in y with the periodicity cell Y .

In order to prove the above Statement 1, let us multiply the equation r�
ij;jy ¼ 0 in Y , by ZðyÞ and integrate

the result by parts over the unit cell Y . We obtain
0 ¼
Z

Y
r�

ijZ;jy dyþ
Z
oY

r�
ijZnj dy:
The second integral is equal to zero because of periodicity of r�
ijðyÞ and ZðyÞ and anti-periodicity of the

vector-normal n. The third integral is equal to zero because of the boundary condition.

Remark. By virtue of the Statement 1 the equality
hbijmnZ;nyi ¼ hre
jnð0ÞZ;nyidim ¼ 0 ðA:5Þ
takes place for any function ZðyÞ periodic in y with the periodicity cell Y .

Statement 2. The initial stresses re
ijð0Þ determined from the solution of elasticity problem (1.1) and (1.2)

satisfy the conditions of the Statement 1.

To prove the Statement 2 we use the following well-known (see e.g., Bensoussan et al. (1978)) repre-

sentation for the local stresses in the elastic body of periodic structure:
re
ijð0Þ ¼ cijklðyÞðvk;lxðxÞ þ Nkl

m;nyðyÞvk;lxðxÞÞ; ðA:6Þ
where v is a solution of the homogenized problem (1.6).

Using (A.6), we obtain
re
ij;jyð0Þ ¼ ðcijklðyÞ þ cijmnðyÞNkl

m;nyðyÞvm;nxðxÞÞ;jyvk;lxðxÞ:
The right-hand side of this equality is equal to zero, since it is the left-hand side of the cellular equation for

the solid having no initial stresses (see (1.21)). Therefore the initial stresses re
ijð0Þ determined from the

solution of the elasticity problem (1.1) and (1.2) satisfy the conditions of the Statement 1.

The following equality takes place due to Statements 1 and 2:
hbklijN 00
k;lyi ¼ 0: ðA:7Þ
The equality (A.7) can be obtained if we substitute Z ¼ N 0
k into Eq. (A.5).
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From Eqs. (2.10) and (A.7) we obtain
nijðrÞ ¼ hbklmnN 00
k;lyN

ij
m;nyi ¼ hbklmnN 0

k;lyN
ij
m;nyi; ðA:8Þ
where N0 ¼ N00 and Nij ¼ N0ij are the solutions of the cellular problems with no initial stresses.

Finally, we obtain (2.7) by substituting bijmn ¼ re
jnð0Þdim and taking into account Eq. (A.1).
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