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Abstract

Thermoelastic problem for a composite solid with initial stresses is considered on the basis of the asymptotic
homogenization method. The homogenized model is constructed by means of the two-scale asymptotic homogenization
techniques. The major result of a present paper is that the effective (homogenized) thermoelastic characteristics of the
composite material depend not only on local distributions of all types of material characteristics: local elastic properties,
local thermoelastic properties, but also on local initial stresses. Therefore it is shown that for the inhomogeneous
(composite) material local initial stresses contribute towards values of the effective characteristics of the material. This
kind of interaction is not possible for the homogeneous materials. From the mathematical viewpoint, the asymptotic
homogenization procedure is equivalent to the computation of G-limit of the corresponding operator. And the above
noted phenomenon is based on the fact that in the considering case the G-limit of a sum is not equal to the sum of G-
limits. The developed general homogenized model is illustrated in the particular case of the small initial stresses, which
is common for the practical mechanical problems. The explicit formulas for the effective thermoelastic characteristics
and numerical results are obtained for a laminated composite solid with the initial stresses.
© 2003 Published by Elsevier Ltd.

1. Homogenization for stressed inhomogeneous media

Consider an inhomogeneous (composite) elastic solid of a periodic structure with a periodicity cell P,
shown in Fig. 1. Here parameter ¢ < 1 denotes a characteristic dimension of the periodicity cell. The
condition ¢ < 1 is formalized as ¢ — 0.

The solid is subject to forces F(x) that cause stresses a7;(0). These stresses are called the initial stresses.
By applying an additional force f(x) and a temperature change @(x), the problem of deformation of a body
having initial stresses arises. The general description of a solid with initial stresses has been considered in
Washizu (1982). The following problems have been formulated to describe the basic (initial) state:
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Fig. 1. Composite solid of a periodic structure and the periodicity cell Y in the “fast” variables y.

L (0,0)v=F inQ, ¢ (0)ni=G(x) onS;, v"=v" onS, (1.1)

i J
and to determine the additional displacements:
L(o,0)w =f inQ, o (o)ni=gi(x) onS;, uv=u" onbs, (1.2)
where ¢ is the normal to Sy, Sy and S, are shown in Fig. 1. Summation with respect to the repeating indices
is assumed here and in the sequel.

In the above Eqgs. (1.1) and (1.2) v* and w® are the initial and additional displacements, respectively;
ciui(x/€) are the local elastic properties of the material with no initial stresses;

04(0) = cyjua(x/6)3uf /Ox, (1.3)
are the initial stresses;

0;,(0) = (cyu(x/&) + 3,(0)0u ) Ouy /Ox; + 1,0 (1.4)
are the so-called additional stresses (see Washizu, 1982).

L.(0,©)u=0/0x;[(ci(x/e) + 07,(0)0u)0uy /0x; + 1;;(x/e)O] is the thermoelastic operator that also
incorporates the initial stresses;

o =1,1fi=k, and 6y =0, if i # k;

tij(x/e) = —cyu(x/e)ou (x/¢), where oy (x/¢) are the coefficients of the linear thermal expansion;

L.(0,0) = 0/0x;[c;jiu(x/e)0ux /Ox; + 1;;(x/e) O] is the thermoelastic operator with no initial stresses;

L.(0,0)u = 0/0x;[c;js(x/¢)0uy;/0x;] is the elastic operator with no initial stresses.

The functions c;u(x/¢), 0%,(0)(x,x/¢), t;;(x/¢), a(X/¢), are periodic in variables x with periodicity cell
P..
Let us describe the distinctive features of the problem under consideration. The operator L.(o, @) can be
written in the form

L.(c,0)u=L,(0,0)u+ mu+0/0x,t;(x/¢)O)], (L.5)
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where L;(0,0) is the elastic operator (see above), the operator m, defined as m.u = 0/0x;[0%,(0)(x, X/&)dx x
Ouy /0x,] incorporates the initial stresses and the term 0/0x;[t;;(x/¢)©] incorporates the thermal expansion.

It is known, see e.g., Bensoussan et al. (1978), that composite body as ¢ — 0 can be replaced by a
homogeneous (referred to as “homogenized’) body similar to it in mechanical behavior. This fact is known
for elastic solids, see e.g., Duvaut (1976), for thermoelastic solids, see e.g., Kolpakov (1980), Kalamkarov
(1989), and for elastic solids with initial stresses see Kolpakov (1989). From the mathematical viewpoint,
the homogenization procedure is equivalent to the computation of a G-limit of a corresponding operator
(see Marcellini, 1975). We would like to compute the homogenized (also called effective) characteristics of
the body. Thus we would like to compute G-limit of the operator L.(a, @) (1.5) as ¢ — 0. Commonly, “limit
of a sum is equal to the sum of limits”. But for G-limits that is not true, and it is possible that “G-limit of a
sum is not equal to the sum of G-limits” (see Marcellini, 1975). From the mechanical viewpoint it is ex-
plained by the occurrence of a general state of local stress and strain when the uniform homogenized
stresses are applied to an inhomogeneous medium (see Kolpakov, 2001). The case when “G-limit of a sum
is not equal to the sum of G-limits” also occurs for the sum of a differential operator and a fast oscillating
function of large amplitude, see Flery et al. (1979), or derivative of a fast oscillating function (see Kolpakov,
1980; Kalamkarov and Kolpakov, 1997).

In the case considered in the present paper we deal with the homogenization problem for the operator
(1.5), which is the sum of the operators L, (0, 0)u = 0/0x;[c;(x/e)0u; /0x;] and m,(c)u = 0/0x;[0%,(0)0uOus /
0x,] of the same order with the fast oscillating coefficients and the derivative of the fast oscillating function
0/0x;(t;;(x/¢)®). For all of them “G-limit of a sum is not equal to the sum of G-limits”. It is the first
characteristic feature of the problem under study.

Another distinctive feature of the problem is related to the effect of “lose of symmetry” in the problem
for elastic body with initial stresses Kolpakov (2004). The elastic constants c;;; have well-known symme-
tries, in particular ¢ = ¢y and ¢ = cuy; (see e.g., Timoshenko and Goodier, 1970). Introducing
By = cijur + 05,(0)S, we can rewrite (1.4) in the form o};(c) = By Ouj /0x; + #;;(x /&) © and consider it as a
constitutive equation for a stressed thermoelastic body. In contrast to the elastic constants, the quantities
B;j; do not have all symmetries common for the elastic constants. Namely B;j; # B At the same time the
quantities By, retain the symmetry By = By;;. Indeed, By = ciju + aj:,(())é,-k = cuy + a‘z/(O)é,ﬂ- = By be-
cause c¢;; and oj,(O)(iik are symmetric with respect to the change of the indices i < k j < /.

1.1. Asymptotic homogenization method applied to the thermoelastic composites with initial stresses

It will be shown in this subsection that the thermoelastic composite body with initial stresses as ¢ — 0
can be replaced by a homogeneous (referred to as “homogenized”) body similar to it in mechanical
behavior and the solutions of the problems (1.1) and (1.2) may be approximated by the solutions of the so-
called homogenized problems:

L(0,0)y=F inQ, o0;0mn=0 onsS;, v=0 ons, (1.6)
L(c,Qu=f inQ, oy(c)n;=0 onsS, u=0 ons,. (1.7)
Here: v and u are the “homogenized” displacements (that is, the displacements determined from the homo-

genized problems);

o L(0,0)v=20/0x;[a;u(0)0v/0x; + T;;(0)O] is the homogenized operator corresponding to (1.6) (the
homogenization of thermoelastic problem with no initial stresses);

e L(0,0)u=0/0x;[a;(0)0u;/0x, + T;j(0)O] is the homogenized operator corresponding to (1.7) (the
homogenization with initial stresses);
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e a;,(0) are the coefficients of operator L(0,0) (these are the “homogenized” elastic constants of the body
with no initial stresses) and 7};(0) are the “homogenized”” thermoelastic constants of the body with no
initial stresses;

e a;(0) are the coefficients of operator L(g) (these are the “homogenized” constants of the body with
initial stresses) and 7;;(o) are the “homogenized” thermoelastic constants of the body with initial stres-
ses;

0ij(0,0) = aj(a)ou /0x; + T;;(0)O;

(0, 0) = a;3,(0)dv, /dx; + T;;(0)O;

()= (mes Y)' Jy dy is the average value over the periodicity cell ¥ = ¢ 'P, = {y = x/¢: x € B,} in the
“fast” variables y = x/¢ (see Fig. 1).

Number of authors (see Bensoussan et al., 1978; Sanchez-Palencia, 1980; Bakhvalov and Panasenko,
1989; Oleinik et al., 1990; Cioranescu and Saint Jean Paulin, 1979; Kalamkarov, 1992, see also references in
the above books) presented the homogenization procedures for an elastic body with no initial stresses.
From the references above it is known that ¢;;(0) are equal to average value of the initial stresses:

6,(0) = (d%,(0)). (1.8)

The homogenization problem for thermoelastic body was analyzed by Kolpakov (1980) (see also Kalam-
karov and Kolpakov (1997)). Kolpakov (1980) has shown that Eq. (1.8) remains valid for thermoelastic
problem.

1.2. Computation of homogenized constants of a stressed thermoelastic body

To derive formulas for computing the homogenized constants of stressed body we use the two-scale
asymptotic expansion method (see e.g., Bakhvalov and Panasenko, 1989). We use the following asymptotic
expansions:

Expansion for displacements

v =u?x) +eaaV(x,y) + - =u¥(x) + Z du®(x,y). (1.9)
5=
Expansion for stresses
o;(0) = Zsko'g‘)(x,y). (1.10)
k=0

Here x are the “slow” variables, and y = x/¢ are the “fast” variables. The functions in the right-hand side
of (1.9) and (1.10) are assumed to be periodic in y with periodicity cell Y. Note that the term u®(x) in (1.9)
depends on the “slow” variable x only.

With the use of two-scale expansions, the differential operators are presented in the form of sum of
operators in x and in y (see e.g., Bensoussan et al., 1978). For the function Z(x,y) of the arguments x and y,
as in the right-hand sides of (1.9) and (1.10), this representation takes the form

GZ/ax,- :Z,[X+8_IZ,[},. (111)

Here and below the subscribe, ix means 0/0x; and, iy means 0/0y;.
Substituting (1.9) and (1.10) into Eq. (1.4), we obtain with allowance for the differentiating rule
(1.11)
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> o) =3 Byl +eul)) + 1,0, k=0,1,..., (1.12)
k=0 k=0

where
Bijmn = Cijmn + 07,(0)Gim- (1.13)

Equating the terms with identical powers of ¢ in (1.12), we obtain
o) = Byl + Bijutily),, + 10,

o\ = Biptt®) 4 By k=1,2,... (1.14)

ij mpny

The equilibrium equation (see (1.2) and (1.4) and definition of the operator L.(o, ®)) may be written for
stresses

0oj,(0)/Ox; =fi in O, oj(o)n;=0 onS. (1.15)

Substituting (1.10) into the equilibrium equations (1.15), we obtain with account of rule of differentiation
(1.11)

Zs"a%x + Zsk’la%y =f; inQ, Zskag‘)nj =0 onsS. (1.16)
k=0 k=0 k=0
Equating the terms with identical power of ¢ in (1.16), we obtain an infinite sequence of equations:
(%) (k+1) .
,m—&—a,”y fi and Ul/jx+al/jy =0 fork>0inY; k=0,1,... (1.17)

Averaging (1.17) over the periodicity cell Y, we obtain an infinite sequence of the homogenized equilibrium
equations, the first of which is the following

(@) o = 1 (1.18)

)
Oijjy

1 1
/ ,“de—/ ofj)n_,-dy+/0§j>njdy.
Y oY

The first integral is equal to zero by virtue of per10d1c1ty O’l and anti-periodicity vector-normal n. The
second integral is equal to zero by virtue of condition a( >nj =0onT.
Let us consider the problem (1.13), £k = 0. It can be wrltten as

(Bijmn(y) m nv + Bt]kl(Y) mnv + tl/(Y)@),j =0 inY. (1'19)

Allowing for the fact that the function of the argument x plays the role of a parameter in the problems in
the variables y and u®) and @ depend on x, only, solution of the problem (1.19) with the periodicity
conditions can be found in the form

= N""(y)u,), (%) + N'(y)O(x) + V(x). (1.20)

Here V(x) is an arbitrary function of the argument x,which does not influence the final equations, and the
periodic function N¥(y) and N°(y) represent solutions of the following unit cell problems:
The elasticity cellular problem for stressed body:

(Bl:/'m”(y)Nr/rcllny + Bi/kl(y))‘j = 0 in Y. (121)

Here we use equality (o;;,) = 0, which follows from the formula

N*(y) is periodic in y with the periodicity cell Y.
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The thermoelasticity cellular problem for stressed body:
(Bijma(¥)Nppy + 15(¥)) ;=0 in Y. (1.22)

m,ny

N°(y) is periodic in y with the periodicity cell Y.

Remark. The cellular problems (1.21) and (1.22) look similar to the classical elastic and thermoelastic unit
cell problems (see e.g., Bensoussan et al., 1978; Kalamkarov and Kolpakov, 1997). Nevertheless, there is a
substantial difference between the problems (1.21) and (1.22) and the classical cellular problems. The
coefficients of the classical cellular problems are the elastic constants c;;,,. The coefficients B, of the
cellular problems (1.21) and (1.22) are the combination of the elastic constants and the initial stresses. We
will use this fact in the next sections of the paper.

Substituting (1.20) into (1.14), we have

0¥ = (B (YINE,, + By (¥ (X) + () + Byna (y)N2,) O(x). (1.23)
Averaging (1.23) over the cell Y, we obtain the following homogenized constitutive equation
(o)) = ayu (@)’ (%) + T () O(x), (1.24)
where
it (7) = (Bijun (Y)N,ry + Bisa(¥)). (1.25)
T;(O-) = <tlj(y) + Bijmn (Y)Ny(p]z‘ny> (126)

are called the homogenized (or effective) elastic and thermoelastic characteristics of the initially stressed
solid.

We introduce the homogenized constants of thermal expansion as 4;(¢) = —c;(0) ' Ti(o), where
cijkl(a)fl is the inverse to the tensor c;u(0).

1.3. The homogenized model

The homogenized equilibrium equation (1.18), the homogenized constitutive equation (1.24) and the
boundary conditions

u?(x)=0 onsS,, a,(j(-))nj =0 onS (1.27)

represent the homogenized problem for stressed body. Substituting (1.25) into (1.24), we can write the
homogenized problem in the form (1.7).

The fundamental difference of this problem from the homogenized problem for body having no initial
stresses is the dependence of the cellular problems (1.21) and (1.22) and the homogenized coefficients
a;x(0), Tj;(0) on the initial stresses.

2. The case of small initial stresses
Consider the case when the initial stresses ajf/.(O) are small as compared with the elastic constants c;;;, and

By (1.13) can be represented as Bjy(X,y) = cim(y) + by (x,y), cf. (2.1). We will find solution of the
cellular problem (1.22) in the form
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0 00 10 0
Nw) = NG+ N ) = DN ) 1)

All the functions N*°(y) in (2.1) are assumed to be periodic in y with the periodicity cell Y. Substituting (2.1)
into (1.22) and equating the terms with identical powers of u, we obtain an infinite sequence of problems,
the first two of which are the following:

(i (Y)Npy + 15(¥)) ,, =0 in ¥, (2.2)
(clj/'nm(Y)N,l,On} + szmn (X7 Y)N,(,),Ony( ))ﬁjy = 0 il’l Y7 (23)
N'"(y), N®(y) are periodic with the periodicity cell ¥. (2.4)

The problem (2.2) is the well-known cellular problem for thermoelastic body with no initial stresses, see
Kalamkarov and Kolpakov (1997), or, that is the same, the cellular problem (1.22) with B;j; = ¢;. Denote
solution of the cellular problem (2.2) with no initial stresses by N°(y).

Substituting (2.1) into (1.22) and saving the terms up to the linear (in u) term, we obtain

Tyj(o) = T;(0) + pny(0) + - - - = (2.5)
where - -- means the terms having the order of y? and higher,

T;5(0) = (tiy — CrmnN; 2N,

k, lv m,ny
0ij 700 00 lij arlo (2.6)
}’l,'j(O') = <_bklm"Nk lme ny Ckl’””Nk I}Nm ny Cklm"Nm nva nv>

The coeflicients 7;;(0) are the homogenized (or effective) thermoelastic constants of the composite material
with no initial stresses, see Kolpakov (1980), Kalamkarov and Kolpakov (1997).
n;(0) = (05, ()N, N}/, (2.7)

pny” ' pily

Remark. The n,,(c) are expressed in terms of derivatives of N** and N and cannot be expressed in terms of
deformations corresponding to N** and N in the general case.

The formula (2.7) can be written in terms of the homogenized stresses. According to Oleinik et al. (1990),
the local stresses in a body with no initial stresses are given by the formula

0;;(0) = cyju(x/&)(ew + N7, (x/€)eng) = cij(x/2) (0015 + N1, (X/€))d pgmn (0 (2.8)

where e,, = 1/2(dv,/0x, + dv,/0x,) are the homogenized strains and {J,gm,} = {a;x(0)} " is the homo-
genized compliance tensor.
Substituting last expression from (2.8) into (2.7) in place of o7, we obtain the following formula:

Tyj(o) = T;(0) + prij(0)0,(0), (2.9)
where
rips(0) = <Cq"chd1N1?t)N;iq} + Cquz?t}Nzl?]qy> (2.10)

with summation with respect to the repeating subscripts.
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3. Properties of the thermoelastic constants of a stressed composite solid

As seen from Eq. (1.25) the homogenized constants a;,(¢) depend only on the local elastic constants and
initial stresses. The homogenized thermoelastic constants 7j;(¢) depend on all local characteristics: the local
thermoelastic constants, the local elastic constants and also on the local initial stresses.

In the general case, see Kolpakov (1989, 1992), see also comment on the inequality (3.1) in Kolpakov
(2001),

aiji(0) 7 aiju(0) + 0;1(0)di, (3.1)
bij(0) # (by), (o) # (o). (3.2)

It is possible to express the effective thermoelastic constants through the solution of the elastic cellular
problems only. Indeed, the following equality takes place

T1(0) = (t(¥) + Bijmn ()N ) = (6(¥) + tun ()N, (33)

The above equality (3.3) can be proved as follows. Multiplying (1.21) by N and (1.22) by N¥ and inte-
grating by parts, and applying the periodicity condition, we obtain

<Bijmn (y)Nnkzl,m]lejy + Bijkl(Y)M?,y> = 0’ (34)
<Bijmn (y)Nrg.ner];t],ny + tii (y)]\lllf;y> =0. (35)

From Egs. (3.3) and (3.4) and the symmetry Bjj,,, = Boui; (see Section 1) we obtain Eq. (3.3). This formula is
the analog of the expression of the homogenized thermoelastic constants through the solution of the elastic
cellular problem, see Kolpakov (1980).

If ¢;jui(y) = const then 7;; = (t;;). Indeed, in this case from (1.21) we have NV = 0 and we obtain T;; = (1)
from the last formula in (3.3). It means that the initial stresses can influence the thermoelastic constants
only in the case of inhomogeneous materials.

4. Laminated thermoelastic medium with the initial stresses

The above developed mathematical apparatus can be successfully applied to the calculation of the
effective characteristics of the laminated media.

If we assume that the layers are parallel to the Ox x,-plane; then all the properties of the material will
depend only on the coordinate y;, and the local problems will become ordinary differential equations that
can be solved explicitly. In the case under consideration the cellular problem (2.3) is transformed to the
following problem:

(cam ()N, + can(33)) =0 on [0, 1], (4.1)
N°(y3) is periodic with period 1 and the cellular problem (2.2) is transformed to
(C,-3m3(y3)N,(y)ll + Z‘g()@))l =0 on [0, 1}, (42)

N°(33) is periodic with period 1.
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The prime means d/dys;. Note that N¥(y3) = N%(33) and N°(33) = N® ().
In the considered case (2.7) takes the form

Tyj(o) = T;;(0) + pny;(a), (4.3)
where
n;(0) = (o35 (0)N,'N). (4.4)

The expressions for the homogenized thermoelastic constants 7;;(0) of composite with no initial stresses can
be found in Kalamkarov and Kolpakov (1997).
It is known that in the laminated media described above 6%;(0) = g33(0) (see (1.8)). Then (4.4) takes the
form
ni;(o) = 033(0)<N£’N1’;j’>. (4.5)
Solving the problem (4.2) we obtain
N = —cin (1) 13 (3) + s (03) ' Co, (4.6)

where “—1”" denotes the inverse matrix and {C,} are constants.
From the periodicity condition in (4.2) and (4.6) we get

(= (13) " (1)) + (can(33) ' C,) = 0.
Solving this equation with respect to constants {C;}, we obtain

Ci = (e (33) ) (Crmm (07) " ts (1))
Substituting this equality into Eq. (4.6), we get

NiO/ = —Ci3n3 (y3)_1t,,3 (v3) + Cians (y3)_1<cn3m3 ()’3)_1>_1<Cm3p3 (J’3)_ltp3 (03))- (4.7)
In the similar way we obtain from (4.1)

NI = —cin (13) " Cus (3) + €33 (3) " (Coms (J/3)71>71<Cm3p3 (y3)71Cp3kl(y3)>~ (4.8)

For isotopic materials c;33 = ducpn3 and t; = 6,4, where o means the linear thermal expansion coefficient.
Then c¢j;; = 6;,/cii, and Eq. (4.7) takes the form

s (o 1 1a
N —&3( o) 63333<y3)<c3333@3>><<y3>>>~ 49)

In the similar way we obtain from (4.8)

S e ) () o
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Substituting Egs. (4.9) and (4.10) into (4.5), we obtain

o) = o-33<0>< <a<y3> (Y <o<<y3>>>
(et () (o))
B U ) A S
o o) ()
ot ) o ()] 1

By using the well-known formulas for the elastic constants of isotropic material (see e.g., Timoshenko and
Goodier, 1970),

al ___E(-v)
T+ —2v) T T v)(1-2v) (4.12)

C3311 =

and substituting (4.12) into (4.11), we obtain for £k =1

() = o) [‘ ()~ e ) e 009

+{ ot ) e ><%> - < T >< G >2<°‘(y3’><~ 1 >]

7(vs)
In the considered case ny(a) = ny1(0).
For k = 3 we obtain

() = 7al0) K oot ) - < TG >< E >_2<“(y3)>] /

where

£ I—v N
(1+v)(1—=2v)’ “ v en(s) 1

For v = const. we get
<2((f;)) ><E(1ys) >1 - <E()1;3)2 ><E(1y3) >2<°‘(y3)>]
<g((§33)) ><E(lys) >_1 - <E(;3)2 ><E(ly3) >_2<0<(y3)>] :

—_—

and  c3333 = EE, 033“()/3) =

nii(0) = nxn(o) = a33(0)

X |
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N as function of ml-volume ratio of the 1st material

E1l 1.0
E2 10.0
alfal 20.0
alfa2 1.0

N as function of mi=volume ratio of the 1st material

E1l 10.0
E2 5.0
alfal 10.0
alfaz2 1.0

Fig. 2. N as function of y;.
The quantity

= (509 259 > - <$><ﬁ><m>

was computed for two-components composite. For two-component composite

(f) = fim + fai,

where g, is the volume contents of the first material, 1, = 1 — y; is the volume contents of the second
material. Fig. 2 shows two plots for N as a function of ;. It is seen that function N can take both positive
and negative values.

5. Conclusions

The homogenization problem for the inhomogeneous (composite) thermoelastic solid with the initial
stresses is analyzed. It is shown that for the inhomogeneous body the asymptotic homogenization method
should be applied directly to the original problem formulation in order to take into account the initial
stresses in a correct way. Application of the direct analog of the classical theory to inhomogeneous bodies,
in general, leads to the wrong results.

It is proved that the effective (homogenized) thermoelastic characteristics of the composite mate-
rial depend not only on local distributions of the constituent materials: i.e. local elastic properties,
local thermoelastic properties, but also on local initial stresses. Therefore it is shown that for the inho-
mogeneous (composite) material local initial stresses contribute towards the values of the effective
characteristics of the material. This kind of interaction is not possible for the homogeneous materials.
From the mathematical viewpoint, the asymptotic homogenization procedure is equivalent to the com-
putation of G-limit of the corresponding operator. And the above noted mechanical phenomenon
is based on the fact that in the considering case the G-limit of a sum is not equal to the sum of
G-limits.



1260 A.G. Kolpakov, A.L. Kalamkarov | International Journal of Solids and Structures 41 (2004) 12491262

The developed general homogenized model is applied to the practically important case of the small initial
stresses as compared with the magnitudes of the elastic constants. In this case the effective characteristics,
both elastic and thermoelastic, of the composite with initial stresses are represented in the following form:

the coefficient corresponding to the composite with no initial stresses + the first order corrector.

It is shown that the first order correctors can be expressed through the solutions of the unit cell problem
for the body with no initial stresses.

Finally, the explicit formulas for the effective thermoelastic characteristics and numerical results are
obtained for a laminated composite solid with the initial stresses.
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Appendix A
A.1. Transformation of the formula (1.26) to a bilinear functional

Let us obtain a representation of the homogenized thermoelastic constants in the form of a bilinear
functional. Being of interest by itself, such kind of representation is useful for the analysis of homogeni-
zation problems.

Multiply Eq. (1.21) by N° and integrate by parts over the periodicity cell Y. As a result, we obtain the
following equality with dccount of periodicity of N* and N

<Bijmn(y)Nk/ NO +B,]k/(X y)N > =0.

mny” i,jy ijy

Then taking into account that B;;; = By;; and changing subscripts, we obtain

<Bijmn (X7 y)Nr(p)z ny> <Bk1m”(y)Nn{mN]?ly> (Al)
Egs. (1.26) and (A.1) yield the following formula:
T;'j(o-) = <tij - Bklmn (Y)Nm nvNI?IV> (Az)

The right-hand side of Eq. (A.2) is the bilinear functional.
A.2. Elimination of the functions N'° and N' from the formula for the first-order corrector

By resorting to problem (2.4) and (2.3) we can eliminate the functions N'® and N'V from Eq. (2.6).
Multiplying Eq. (2.4) by N and integrating the result by parts over the unit cell ¥, and taking into
account the periodicity of N% and N'° and the boundary condition (2.4) we obtain

<cijnm (Y)NW NOO + bt/kl (Xa Y)N + bt/mn (X7 Y)N()k[ NOO > - O

mny” Vi,jy ijy mny” Vi,jy
Afterwords,
(Cijmn(YIN,S N = = (bramn (X, YINJ2 N, A+ bijea (X, YN ). (A.3)

Multiplying Eq. (2.3) by N and integrating the result by parts over the cell ¥, and taking into account
the periodicity of N% and N'° we obtain
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<Cijmn(Y)N10 vN'OkZ + bijmn (Xa Y)NOO N0k1> =0.

mny” 'i,jy mny” "1,jy
Afterwords,
<cijmn (y)N,},Ony]le]];{> = - <bijmn (X7 y)Nr(r)l(,)ny]vl(,)jk}l> : (A4)

Substituting Egs. (A.3) and (A.4) into (2.6), we obtain

n;(o) = <_bk/mn(y)N0ij N&y + tklmn(y)NOU ,Ng;)y + bkzij(y)N,Q?y + Diimn (Y)NOO N/%)

m,ny m,ny m,ny

= (buay (YN, + Brmn (Y)Nooy Ni'h)-

Statement 1. Let the stresses g7; be periodic in y with the periodicity cell Y, and let them satisfy the equation

;. =01in Y. Then (0},Z;,) = 0 for any function Z(y) periodic in y with the periodicity cell Y.

In order to prove the above Statement 1, let us multiply the equation g}, ,, = 0in ¥, by Z(y) and integrate
the result by parts over the unit cell Y. We obtain '

Oz/a;‘jZ’jydy—ﬁ—/ 0;;Zn;dy.
Y oy

The second integral is equal to zero because of periodicity of o7;(y) and Z(y) and anti-periodicity of the
vector-normal n. The third integral is equal to zero because of the boundary condition.

Remark. By virtue of the Statement 1 the equality
<bijng,ny> == <Gjn(0)z,ny>5im =0 (AS)

takes place for any function Z(y) periodic in y with the periodicity cell Y.

Statement 2. The initial stresses afj(O) determined from the solution of elasticity problem (1.1) and (1.2)
satisfy the conditions of the Statement 1.

To prove the Statement 2 we use the following well-known (see e.g., Bensoussan et al. (1978)) repre-
sentation for the local stresses in the elastic body of periodic structure:

75(0) = i (¥) (01x(X) + N, (V) 0r1:(X)), (A.6)

where v is a solution of the homogenized problem (1.6).
Using (A.6), we obtain

0%;(0) = (i (¥) + Ciimn (YN (V) Ve (X)), 00 16 (X).

The right-hand side of this equality is equal to zero, since it is the left-hand side of the cellular equation for
the solid having no initial stresses (see (1.21)). Therefore the initial stresses afj(O) determined from the
solution of the elasticity problem (1.1) and (1.2) satisfy the conditions of the Statement 1.

The following equality takes place due to Statements 1 and 2:

The equality (A.7) can be obtained if we substitute Z = N} into Eq. (A.5).
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From Egs. (2.10) and (A.7) we obtain

I’l,‘j(G) = <bklmnN]?7(;}7Nl:i

m,ny

> = <bklmnN131le:i >7 (Ag)

m,ny

where N” = N and N = N% are the solutions of the cellular problems with no initial stresses.

Finally, we obtain (2.7) by substituting b;;,, = aj."(O)é,-m and taking into account Eq. (A.l).
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